Aldrin epoxidation and dihydroisodrin hydroxylation as probes of in vivo and in vitro oxidative metabolic capability of some caterpillars.
نویسنده
چکیده
Comparative biochemical studies are productive means to study factors that limit both beneficial and harmful effects of chemicals. Reactions such as aldrin epoxidation and dihydroisodrin hydroxylation are valuable assays of oxidative metabolism in scientific studies of chemical biology in insects, subhuman primates and other living things. The tissue distribution of activity in caterpillars may have functional significance. Localization of relatively high concentrations of these cytochrome P450 monooxygenases in gut tissue of lepidoptera may represent an important means to minimize absorption of lipophilic foreign chemicals in food. Some polychlorocycloalkanes permit in vivo and in vitro studies owing to their stability, acceptable toxicity and relatively simple pattern of metabolism. In vivo studies to assess the significance of in vitro findings are feasible with substrates such as aldrin, dihydroisodrin (DHI) and oxidative methylenedioxyphenyl inhibitors such as piperonyl butoxide (PBO) or carbon monoxide. Biphasic dose-dependent decreased and increased DHI-OH formation resulted from PBO pretreatment by gut, fat body, head and Malpighian tubule homogenates of cutworms and gut and fat body (the only tissues tested) of cabbage looper Trichplusia ni (Hübner) and black cutworm Agrotis ipsilon (Hüfnagel). The biphasic in vivo responses of caterpillars to PBO are a reminder of the complexity of biochemical and physiological responses of organisms coexposed to chemicals that are classified, often glibly, as toxic substances and metabolic inhibitors and inducers. Knowledge of dose and time relationships demands very careful evaluation in living things in the environment.
منابع مشابه
Relationship between oxidative metabolism of 2-acetylaminofluorene, debrisoquine, bufuralol, and aldrin in human liver microsomes.
The capacity of human liver microsomes from 28 individuals to metabolize debrisoquine and bufuralol, two drugs oxidized polymorphically in humans, as well as the carcinogen 2-acetylaminofluorene (AAF), was determined. In addition, the cytochrome P-450 content and the capacity of these microsomes to carry out the epoxidation of aldrin were measured. Interindividual differences in debrisoquine 4-...
متن کاملHydrogen Bond Control of Active Oxidizing Species in Manganese Porphyrin Hydroxylation Catalysts
Some meso-tetra aryl porphyrinato manganese (III) acetate or chloride complexes including meso-tetraphenyl porphyrinato manganese (III) chloride (TPPMnCl), meso-tetrakis(2,3-dimethoxyphenyl)porphyrinato manganese(III) acetate, (T(2,3-OMeP)PMnOAc) and meso-tetrakis(pentaflourophenyl)porphyrinato manganese (III) acetate (TPFPPMnOAc) were synthesized. These porphyrins were used as catalyst in the ...
متن کاملVulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications
Background The present study describes the susceptibility of prepubertal testis of mice to prooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions. MaterialsAndMethods Following in vitro exposure to iron (5,10 and 25 M), oxidative response measured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4 wk) was more robust c...
متن کاملAntidiabetic and In Vivo Antioxidant Activity of Ethanolic Extract of Bacopa monnieri Linn. Aerial Parts: A Possible Mechanism of Action
Diabetes mellitus is a metabolic disorder affecting carbohydrate, fat and protein metabolism that affects nearly 10% of the population every year. The treatment of diabetes mellitus has been confined to use of oral hypoglycemic agents and insulin, the former being reported to possess serious side effects. This leads to increasing demand for herbal products with antidiabetic factor with little s...
متن کاملاکسیدازها و مقاومت به حشره کش های پیرترویید در حشرات مهم پزشکی
MFÔs are a large diverse superfamily of enzymes found in all insect tissues. They are involved in the metabolism of xenobiotics (e.g. drugs, pesticides and plant toxins) and endogenous compounds (e.g. ecdysteroids and juvenile hormones). They are also involved in bioactivation of phosphorothioate compounds such as organophosphorus insecticides. They have very diverse activities like hydroxyla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pest management science
دوره 64 6 شماره
صفحات -
تاریخ انتشار 2008